Left Termination of the query pattern
member_in_2(a, g)
w.r.t. the given Prolog program could successfully be proven:
↳ Prolog
↳ PrologToPiTRSProof
Clauses:
member(X, .(X, X1)).
member(X, .(X1, Xs)) :- member(X, Xs).
Queries:
member(a,g).
We use the technique of [30]. With regard to the inferred argument filtering the predicates were used in the following modes:
member_in: (f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
member_in_ag(X, .(X, X1)) → member_out_ag(X, .(X, X1))
member_in_ag(X, .(X1, Xs)) → U1_ag(X, X1, Xs, member_in_ag(X, Xs))
U1_ag(X, X1, Xs, member_out_ag(X, Xs)) → member_out_ag(X, .(X1, Xs))
The argument filtering Pi contains the following mapping:
member_in_ag(x1, x2) = member_in_ag(x2)
.(x1, x2) = .(x1, x2)
member_out_ag(x1, x2) = member_out_ag(x1)
U1_ag(x1, x2, x3, x4) = U1_ag(x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
Pi-finite rewrite system:
The TRS R consists of the following rules:
member_in_ag(X, .(X, X1)) → member_out_ag(X, .(X, X1))
member_in_ag(X, .(X1, Xs)) → U1_ag(X, X1, Xs, member_in_ag(X, Xs))
U1_ag(X, X1, Xs, member_out_ag(X, Xs)) → member_out_ag(X, .(X1, Xs))
The argument filtering Pi contains the following mapping:
member_in_ag(x1, x2) = member_in_ag(x2)
.(x1, x2) = .(x1, x2)
member_out_ag(x1, x2) = member_out_ag(x1)
U1_ag(x1, x2, x3, x4) = U1_ag(x4)
Using Dependency Pairs [1,30] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(X, .(X1, Xs)) → U1_AG(X, X1, Xs, member_in_ag(X, Xs))
MEMBER_IN_AG(X, .(X1, Xs)) → MEMBER_IN_AG(X, Xs)
The TRS R consists of the following rules:
member_in_ag(X, .(X, X1)) → member_out_ag(X, .(X, X1))
member_in_ag(X, .(X1, Xs)) → U1_ag(X, X1, Xs, member_in_ag(X, Xs))
U1_ag(X, X1, Xs, member_out_ag(X, Xs)) → member_out_ag(X, .(X1, Xs))
The argument filtering Pi contains the following mapping:
member_in_ag(x1, x2) = member_in_ag(x2)
.(x1, x2) = .(x1, x2)
member_out_ag(x1, x2) = member_out_ag(x1)
U1_ag(x1, x2, x3, x4) = U1_ag(x4)
MEMBER_IN_AG(x1, x2) = MEMBER_IN_AG(x2)
U1_AG(x1, x2, x3, x4) = U1_AG(x4)
We have to consider all (P,R,Pi)-chains
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
Pi DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(X, .(X1, Xs)) → U1_AG(X, X1, Xs, member_in_ag(X, Xs))
MEMBER_IN_AG(X, .(X1, Xs)) → MEMBER_IN_AG(X, Xs)
The TRS R consists of the following rules:
member_in_ag(X, .(X, X1)) → member_out_ag(X, .(X, X1))
member_in_ag(X, .(X1, Xs)) → U1_ag(X, X1, Xs, member_in_ag(X, Xs))
U1_ag(X, X1, Xs, member_out_ag(X, Xs)) → member_out_ag(X, .(X1, Xs))
The argument filtering Pi contains the following mapping:
member_in_ag(x1, x2) = member_in_ag(x2)
.(x1, x2) = .(x1, x2)
member_out_ag(x1, x2) = member_out_ag(x1)
U1_ag(x1, x2, x3, x4) = U1_ag(x4)
MEMBER_IN_AG(x1, x2) = MEMBER_IN_AG(x2)
U1_AG(x1, x2, x3, x4) = U1_AG(x4)
We have to consider all (P,R,Pi)-chains
The approximation of the Dependency Graph [30] contains 1 SCC with 1 less node.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
Pi DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(X, .(X1, Xs)) → MEMBER_IN_AG(X, Xs)
The TRS R consists of the following rules:
member_in_ag(X, .(X, X1)) → member_out_ag(X, .(X, X1))
member_in_ag(X, .(X1, Xs)) → U1_ag(X, X1, Xs, member_in_ag(X, Xs))
U1_ag(X, X1, Xs, member_out_ag(X, Xs)) → member_out_ag(X, .(X1, Xs))
The argument filtering Pi contains the following mapping:
member_in_ag(x1, x2) = member_in_ag(x2)
.(x1, x2) = .(x1, x2)
member_out_ag(x1, x2) = member_out_ag(x1)
U1_ag(x1, x2, x3, x4) = U1_ag(x4)
MEMBER_IN_AG(x1, x2) = MEMBER_IN_AG(x2)
We have to consider all (P,R,Pi)-chains
For (infinitary) constructor rewriting [30] we can delete all non-usable rules from R.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
Pi DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(X, .(X1, Xs)) → MEMBER_IN_AG(X, Xs)
R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2) = .(x1, x2)
MEMBER_IN_AG(x1, x2) = MEMBER_IN_AG(x2)
We have to consider all (P,R,Pi)-chains
Transforming (infinitary) constructor rewriting Pi-DP problem [30] into ordinary QDP problem [15] by application of Pi.
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
Q DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(.(X1, Xs)) → MEMBER_IN_AG(Xs)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem. From the DPs we obtained the following set of size-change graphs:
- MEMBER_IN_AG(.(X1, Xs)) → MEMBER_IN_AG(Xs)
The graph contains the following edges 1 > 1